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We introduce a novel technique that speeds up the computation of a frequency sweep or some parametric change of material
properties—assumed uniform over the entire domain—around a nominal value in electro- or magneto-quasistatic problems. In
place of using the usual practice of solving the complex systems arising at each frequency and at each material parameter value
independently, our technique requires only one factorization of a real, symmetric and positive definite matrix. The solution at each
frequency and each value of material parameter is then found with a few back-substitutions only. The obtained speed up is sensible
and the implementation is straightforward, showing the usefulness of the proposed technique in practical applications.

Index Terms—magneto-quasistatics, electro-quasistatics, finite elements (FEM), finite integration technique (FIT), frequency sweep,
shifted complex symmetric systems

I. INTRODUCTION

THE need of frequency sweeps arise frequently in electro-
(EQS) or magneto-quasistatic (MQS) problems. We just

mention the frequency course of impedance in impedance
spectroscopy or the transmembrane potential in electroporation
[1] and the multi-frequency non destructive testing based on
eddy currents [2]. Besides the variation of frequency, it is
also required in many applications to parametrically change
the material properties, for example the electrical permittivity
in EQS and the electrical conductivity in MQS. The most
common approach to operate the sweep is to perform one inde-
pendent simulation for each frequency and material property.
With iterative linear solvers only, one may use the solution of
the previous frequency as a starting point for the new one. But
this solution is not available when using direct solvers as Intel
MKL PARDISO, which usually is the most efficient solution
for MQS problems solved on massive parallel computers.

In this paper we introduce an alternative approach which
exploits the efficient real valued (RV) iterative method for
solving complex symmetric linear systems proposed in [3].
The big advantage of the technique proposed in this paper is
that it requires only one factorization for all simulations and
the matrix that needs to be factorized is real, symmetric and
positive definite. The solution for each simulation is then found
by a few back-substitutions of this real matrix. This yields to a
sensible reduction in the overall computational time required.

II. RV SOLVER FOR COMPLEX SYMMETRIC SYSTEMS

The idea proposed in this paper is based on the real valued
(RV) algorithm for solving complex symmetric systems [3],
which is recalled in what follows. Let us consider a symmetric
complex matrix where the real part R and imaginary part S are
symmetric positive semi-definite and at least one of R and S is
symmetric positive definite (SPD). This is the case of the EQS
formulation based on the scalar potential and, for example,
the gauged MQS formulation based on the reduced magnetic

vector potential. Let us write the system as

(R+ iS)(x+ iy) = r+ i s (1)

and let us define the real matrix W as

W = R+ αS, (2)

where α > 0 is a real number such that W is SPD. The system
may be solved by using the following recipe:

1) f = r+ SW−1(s− αr).
2) Solve with a preconditioned conjugate gradient (PCG)

iterative solver
Kx = f , (3)

where

K = R− αS+ (α2 + 1)SW−1 S (4)

and W is the preconditioner.
3) z = W−1

(
α r− s+ (1 + α2)Sx

)
.

4) y = αx− z.
Provided that one computes a factorization of W first, steps
1), 3) and 4) require just two back-substitutions. Solving step
2) requires also a few back-substitutions, since it is proved
that the condition number of the preconditioned system is
bounded above by 2 (when, without knowing any estimate for
the eigenvalues of the matrices, one simply sets α = 1), see
[3]. When α = 1 and the required residual is 10−6, the upper
bound on required iterations is 8.

III. FAST SWEEP

It appears that the RV method has been exploited in compu-
tational electromagnetics only in [4], where it has been used
to solve EQS problems. However, systems resulting from EQS
problems are nowadays more efficiently solved with available
algebraic multigrid codes as AGMG [5].

To the best of our knowledge, we are not aware about papers
applying the RV method to MQS problems. Especially, it seems
that the idea proposed in this paper, i.e. how to speed-up



frequency and some material parameters sweeps, is novel. That
is, we are going to show that the RV method can be exploited to
solve for all frequencies and all values of material parameters
by using only one factorization of the real matrix W. To
explain the very idea behind the proposed approach, let us
consider a MQS problem formulated with the gauged reduced
magnetic vector potential [2]. Exactly the same technique may
also be used for EQS problems.

A. Eddy current formulation

Three regions of the domain D are identified: the passive
conductive region Dc, the nonconductive region Da, and the
source region Ds. By combining discrete Ampère’s and Fara-
day’s laws with the discrete counterpart of constitutive laws, a
symmetric complex linear system of equations is obtained [2],

(Kν + iωMσ) Ar = −iωMσAs, (5)

where ω is the angular frequency. The construction of Kν and
Mσ for a mesh composed by star-shaped polyhedral elements
is addressed in [6], [7]. The unknowns Ar are the circulations
of the reduced magnetic vector potential along edges e ∈ D
due to eddy currents in Dc, only. On the right-hand side, As

denotes the circulations of the magnetic vector potential along
e ∈ Dc produced by current sources in Ds and zero for edges
in Da

⋃
Ds. Then, the circulations of the modified magnetic

vector potential A can be found as A = Ar +As.

B. Main idea

If we consider a frequency ω, we instantiate the RV method
with R = Kν and S = ωMσ . So, to exploit the RV method,
one should compute a factorization of W = Kν+αωMσ . The
novel idea is that if we need to simulate at a different frequency
ω̂ we can reuse W and its factorization. This is because we
can chose an α̂ such that W = Kν+αωMσ = Kν+ α̂ ω̂Mσ

holds. If we set α = 1, we have that α̂ = ω/ω̂ and Ŝ = ω̂Mσ .
Clearly, this idea can be easily translated to produce a

fast solution also when a parametric study of some mate-
rial property is needed (for example, changes of the electric
permittivity ε in EQS or conductivity σ in MQS), provided
that the change in material property is uniform over the entire
domain. Let us suppose that the conductivity is scaled by the
real number k. We can chose α̂ such that W = Kν+αωMσ =
Kν + α̂ ω kMσ holds. If we again set α = 1, we have that
α̂ = 1/k and Ŝ = ωkMσ .

IV. NUMERICAL EXPERIMENTS

A benchmark comprising a coil above a conducting plate is
considered, see Fig. 1 and [7]. The geometry is discretized with
an hexahedral mesh consisting of 270,125 nodes, 265,360 ele-
ments and 805,464 edges. The number of resulting unknowns
is 529,182. The central frequency is assumed 1kHz.

First, we note that the RV method is useful even if only
one simulation at a fixed frequency is needed. In fact, the
direct solver PARDISO for complex symmetric matrices takes
65 seconds for the frequency of 1kHz, whereas the RV method
takes 39 seconds (23 for the factorization of W plus 16 for the
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Fig. 1. Lines represent the time in seconds required to solve the eddy current
problem at each frequency point. The histogram represents the number of PCG
iterations required. With the chosen frequency range, 0.5 ≤ α̂ ≤ 2.

PCG iterations stopped as soon as the relative residual gone
below 10−6).

When a frequency sweep of 16 points between 500Hz
and 2KHz is needed, the standard technique takes a total
time of 1044 seconds. The technique proposed in this paper
requires a first preprocessing comprising the factorization of
W which takes about 23 seconds. Then, the solution at each
frequency requires from 15 to 24 seconds, depending how far
the frequency is from 1kHz, see Fig. 1. The stopping criterion
used is a relative residual below 10−6 for all frequencies. In
Fig. 1, the histogram represents the required PCG iterations for
each frequency. The total time for the sweep is 365 seconds,
with a speedup factor of about 3 with respect to PARDISO.

Of course, when the parameter variation is large and con-
sequently α̂ differs sensibly from the unity, it is convenient
to factorize again matrix W considering a different frequency.
Moreover, in order to be more efficient over a wide number and
range of frequencies, this technique should be coupled together
with other standard model order reduction strategies.
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